
Week 14 – Monday



 What did we talk about last time?
 Reliable storage and location
 GFS
 Distributed hash tables

 Consensus in distributed systems
 Byzantine generals problem

 Blockchain









 Final exam will be in this room:
 Wednesday, April 30, 2025
 8:00 – 10:00 a.m.
 50% longer than previous exams, but you have 100% more time

 Mostly short answer questions
 One or two matching questions
 A couple of debugging questions
 A couple of programming questions



 cat
 cd
 chmod
 cp
 grep

 kill
 less
 ls
 make
 man

 mkdir
 mv
 ps
 pwd





 Although it's a bit ugly, C99 specifies types with fixed sizes
 To use them, #include <stdint.h>
 Then, you're guaranteed the following:
 int8_t 1 byte (8 bits), signed
 int16_t 2 bytes (16 bits), signed
 int32_t 4 bytes (32 bits), signed
 uint8_t 1 byte (8 bits), unsigned
 uint16_t 2 bytes (16 bits), unsigned
 uint32_t 4 bytes (32 bits), unsigned

 And you probably get int64_t and uint64_t as well



 If you want to print an int, you use %d
 If you want to print an int32_t, what do you do?
 There are some (ugly) macros used:
 PRId8
 PRId16
 PRId32
 PRId64

 You can use these macros for octal or hex by changing d to o
or x, e.g. PRIx32



 To use these macros, #include <inttypes.h>
 Note that inttypes.h includes stdint.h, so you can kill two birds with one 

stone
 These macros are special strings
 There's an obscure rule in C that treats consecutive strings literals like a 

single string literal:
 "goats" "boats" "moats" is the same to the compiler as 
"goatsboatsmoats"

 To use a macro, it has to "float" in between the rest of a formatting string

int a = 7;
int32_t b = 7;
printf ("Value: %d\n", a); // int version
printf ("Value: %" PRId32 "\n", b); // int32_t version





 System architectures are models of systems that describe:
 Relationships between entities in the system
 Ways the entities communicate

 Different architectural styles have pros and cons
 Using a certain style can have big impacts on system performance
 Common styles:
 Client/server
 Peer-to-peer (P2P) 
 Layered
 Pipe-and-filter
 Event-driven
 Hybrid



 This book considers client/server architectures 
from the perspective of a many clients 
connecting to a single server
 If you recall, the Software Engineering book 

describes client/server as a system with many 
servers, each of which offer a single service

 How does a client know how to reach the server?
 Uniform resource identifier (URI) is a common way: 

www.goats.net/image.jpg
 Client/server architectures depend on protocols

to define how clients can request services and 
understand the response

Server

Client 1

Client 2

Client 3Client 4

Client 5

http://www.goats.net/image.jpg


ADVANTAGES

 Updates are simple, because only the 
server needs to be updated

 Only the server needs to be checked 
for security problems or data 
corruption

DISADVANTAGES

 Single point of failure

 To reduce the single point of failure problem, it's common to have multiple servers 
that offer the same services or files

 To work, these servers must coordinate with each other when one is updated



 If more and more servers are used, the architecture 
begins to look like a P2P architecture
 BitTorrent
 DNS

 In P2P, there is usually no distinction between 
clients and servers, since most entities act as both

 Advantages:
 Service scales, staying the same or improving as the 

number of users goes up
 Disadvantages:
 Security: A corrupted node can be hard to detect
 Administration: Propagating changes can be difficult

Node 1

Node 2

Node 3Node 4

Node 5



 Layered architectures divide systems into a strict 
hierarchy of components

 Each layer can only communicate with the layer 
above and below it

 Advantages:
 As long as a new layer knows how to talk to the layer 

above and below, it can be swapped out with an old layer
 New layers can be added on top

 Disadvantages:
 It's hard to divide systems into hierarchical layers
 It can be inefficient to prevent one layer from talking 

directly to one much lower or higher
 Some services at each layer are redundant

Persistence Layer

Services Layer

Business Layer

Presentation Layer



 Pipe-and-filter architectures send data in one direction through a series of components
 The output of one stage is the input of the next
 Each stage transforms the data in some way
 Examples:
 Linux command-line piping

 Java stream filtering
 Stages of a compiler

 Advantages:
 Good for serial data processing
 Modular components that have the same input and output can be reused in different sequences

 Disadvantage: No error recovery if something breaks in the middle

sort foo.txt | grep -i error | head -n 10 > out.txt



 Event-driven architectures react to events, changes in the state 
of the system
 GUIs are a common example of event-driven architectures

 Event generator create events
 Event channels send the event to the appropriate event handlers

 Advantages:
 Adding new event generators and handlers allows for an extensible 

system
 Good for reactive systems

 Disadvantage: Timing can be complicated, especially for shared 
resources

Event 
Generator

Event 
Channel

Event 
Processing

Event 
Handler 1

Event 
Handler 2

Event 
Handler 3



 We talk about the previous architectures because they're models that 
have been successful in the past

 Most real systems are a mix of different architectures
 The whole system could be one architecture, but its components have their own
 A system is mostly one architecture, but it breaks a couple of rules
 There can be different ways of looking at the same system

 Example: OS kernel
 Event-driven because it has interrupt handlers to respond to signals from the 

hardware
 Client/server because applications that make system calls are making requests
 Layered because file systems and networking operate with layers from the 

generic operation down to the requirements of particular hardware





 As discussed in COMP 3100, UML 
standardizes state models as a way 
to visualize states and transitions
 States are shown as rounded rectangles
 A solid circle shows the initial state
 A solid circle in a circle shows the final 

state
 Transitions are shown as labeled arrows
 Effects (if any) are written after a slash 

after the transition label



 State machines are often 
used to recognize strings as 
being legal or illegal

 Consider a state machine 
from Project 1 designed to 
recognize integer values 
(formatted in either decimal 
or octal)

 In addition to recognizing 
integers as legal or illegal, 
the machine builds the 
integer based on the effects



 There are algorithms to convert between regular expressions and 
state machines

 Most regular expression libraries build a state machine as a way to 
see if strings match the regular expression

 One way to implement state machines is with a 2D array
 One row for every state
 One column for every event, saying which state a given state will 

transition to
 If there are effects, a second 2D array can show which effects 

happen on those transitions
 If an action happens whenever a state is entered, a 1D array can 

hold that information



 The state model on the left has a transition table on the right 

Events

States Connect Suspend Ready Finish Cancel

Connecting Buffering

Buffering Playing Closing

Playing Buffering Closing

Closing



 Two enums are used to list the states and the events
 A 2D array stores the transitions

typedef enum { CONN, BUFF, PLAY, CLOS, NST } ms_t;
typedef enum { Connect, Suspend, Ready, Finish, Cancel } event_t;
#define NUM_STATES (NST+1)
#define NUM_EVENTS (Cancel+1)
static ms_t const _transition[NUM_STATES][NUM_EVENTS] =
{

// Connect Suspend Ready   Finish Cancel
{  BUFF,   NST,    NST,    NST,   NST  }, // Connecting
{  NST,    NST,    PLAY,   NST,   CLOS }, // Buffering
{  NST,    BUFF,   NST,    CLOS,  NST  }, // Playing
{  NST,    NST,    NST,    NST,   NST  }  // Closing

};



 A table filled with function pointers can be used for effects

static action_t const _effect[NUM_STATES][NUM_EVENTS] = {
// Connect     Suspend     Ready   Finish Cancel
{  start_load, NULL,       NULL,   NULL,  NULL }, // Connecting
{  NULL,       NULL,       resume, NULL,  NULL }, // Buffering
{  NULL,       pause_play, NULL,   NULL,  NULL }, // Playing
{  NULL,       NULL,       NULL,   NULL,  NULL }  // Closing

};



 State models don't have any timing or 
sequence information

 Sequence models show the order in which 
messages are sent from one entity to 
another
 Solid arrows show synchronous messages
 Open arrows show asynchronous messages
 Dotted lines show responses
 Messages that end in circles are lost

 The order of messages in sequence models 
is logical, not scaled by time





 A program is an implementation of an algorithm in a 
programming language
 A list of instructions for the computer

 A process is program being executed
 Usually, processes are different programs
 But it's not unusual to have several processes running at the same 

time that are the same program
 Running a program creates a new process



 Every process has its own virtual memory
 Addresses from 0 up to 232 or 264 bytes

 Each instance of virtual memory is organized into segments
 Code
 Data
 Heap
 Stack
 Kernel

 Each segment has certain kinds of operations allowed on it
 Do illegal operations, and you get a segmentation fault
 As functions get called, the stack grows downward
 Call too many functions, and you'll get a stack overflow when it 

gets too big
 Depending on the system, the heap can grow too
 malloc() returns NULL when you run out of heap space

High Memory

Kernel OS memory

Stack
Local variables, 
return addresses

Heap
Dynamically 
allocated data

Low Memory

Data Global variables

Code
Program 
instructions



 Addresses in one process have nothing to do with addresses in 
another

 The OS maps the virtual addresses to physical addresses
 Transparently!
 Each process has no idea what the location of, for example, its virtual 

address 0x0432A8F8 is in physical memory
 Benefits:
 Security: One process cannot (normally) interfere with the memory inside 

another process
 Bookkeeping: The OS only gives each process what it needs and can 

temporarily store parts of a process's memory on disk to make more space



 OS sometimes means the entire operating system, including 
utilities, window managers, and lots of other stuff

 Sometimes OS means just the kernel
 The kernel is the part of the OS that does deep stuff:
 Scheduling processes
 Accessing devices
 Managing memory

 Some operations can only be done in kernel mode, the mode 
that the kernel runs in

 Normal programs run in user mode





 One approach to batch processing is running Process A until it's done, then 
Process B, then Process C

 The problem is that programs do I/O
 I/O is slow
 The CPU isn't in use while waiting for I/O

 Consider the following example:
 Green is computation
 Orange is I/O

 Nothing is getting done during I/O!

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ro

ce
ss A

B

C



Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ro

ce
ss A

B

C

 With true multiprogramming, you have more than one process 
loaded into memory

 Then, when one process is waiting on I/O, we can start running 
another

 Using multiprogramming, we could run Processes A, B, and C as 
follows:

 Doing so gives us a CPU utilization of 15/16 = 93.75% and only 16 
time units to finish the work



 Preemptive multitasking:
 Processes get a maximum amount of time to run called a quantum
 If the process starts doing I/O, the OS switches to another process
 Otherwise, the OS switches when the process runs out of time
 There's research about the ideal length of a quantum

 Cooperative multitasking:
 Processes run until they do some I/O or voluntarily give up control

 Cooperative is good because it's simple and can have lower 
overhead

 Unfortunately, the problem of processes that don't give up control 
means that most modern systems use preemptive multitasking



 A context switch happens when the running process changes
 The virtual memory of one process changes to another
 The kernel memory stays the same

 The scheduler in the OS decided which process runs next

 Because memory has to get saved and restored, cache is invalidated, and 
there's a switch from user mode to kernel mode and back, context 
switches have overhead that slows things down

Kernel Mode User ModeUser Mode

Process executes 
syscall to 

switch to kernel 
mode

Save register 
values into 

Process A's data 
block

Change to 
Process B's 

virtual memory

Restore register 
values from 

Process B's data 
block

Kernel executes 
sysret, 

returning to user 
mode

Process B 
resumes 

executing





 The kernel runs with full access privileges to everything
 The kernel controls:
 Physical memory
 File system
 I/O devices

 It handles power disruption and people attaching USB devices
 Jobs of the kernel
 Resource manager: Giving access to hardware when needed
 Control program: Handling errors and access violations

 Because it has to work consistently, the kernel doesn't change 
much over the years



 The current privilege level (CPL) is a 2-bit value set in x86 CPUs
 Also called a ring
 Ring 3 is user mode
 Ring 0 is kernel mode
 The other two rings aren't used

 When in kernel mode:
 All memory addresses can be accessed
 Some special CPU instructions like halting the CPU or invalidating the 

cache can be executed
 Some normal CPU instructions work differently



 The kernel can be invoked in two different ways
 System call:
 A user mode program wants to do something (like open a file) that requires OS 

involvement
 Somewhere in the library, a special trap instruction will ask the kernel to do 

something
 Interrupt or exception:
 Interrupts are hardware events that cause the kernel to react, like clicking a 

mouse
 Exceptions are software events that notify the kernel of a problem, like a 

segmentation fault
 This kind of exception isn't the same as an exception in Java, although the Java 

exception can be triggered by an OS exception 





 User-mode processes can do normal CPU operations
 Add, subtract, multiply, divide
 Test for equality

 They can't  do anything outside the CPU on their own
 Read or write hard drive data
 Send messages over the network

 To do these things, processes make system calls, asking the 
kernel to do the operation



 In assembly, a special trap instruction triggers a mode switch so 
that the kernel will start doing stuff
 The x86 trap instruction is syscall

 The kernel checks to make sure that the process has all the 
necessary privileges to do the operation first

 After the system call, the kernel runs the sysret instruction, 
returning to user mode

 Many system calls are referred to by the C functions that are 
called to run them, even though those functions just do set up 
before running the real system call
 For example: write()



 The 64-bit Linux kernel has more than 300 system calls
 These are just a few common ones:

System Call Number Purpose
read 0 Read from a file descriptor
write 1 Write to a file descriptor

nanosleep 35 High-resolution sleep (units in seconds and nanoseconds)
exit 60 Terminate the current process
kill 62 Send a signal to a process
uname 63 Get information about the current kernel

gettimeofday 96 Get the system time in seconds since midnight, January 1, 1970
sysinfo 99 Get information about memory usage and CPU load average
ptrace 101 Trace another process's execution





 Processes are, of course, created when you run a program from 
the command line

 However, you can also create processes from within a program, 
using calls to special functions

 The fork() function creates a new processes that's exactly the 
same as the current process

 The exec() function allows you to replace the current process 
with another program

 Each process has a unique ID, its process ID or PID
 getpid() returns the PID of the current process
 getppid() returns the PID of the current process's parent process



 The fork() function is pretty crazy!
 When you call it, the process you're inside of keeps running
 And another process spawns at exactly the same point in code
 Both processes have exactly the same memory layout
 The only difference is that fork() returns the child PID for the original process and 0 if 

you're the process that just got forked

pid_t child_pid = fork ();

if (child_pid < 0)
printf ("ERROR: No child process created\n");

else if (child_pid == 0)
printf ("Hi, I'm the child!\n");

else
printf ("Parent just gave birth to child %d\n", child_pid);



 If you call fork() in a loop, you will quickly create too many 
processes and slow/crash your computer

 Each fork() creates a new process, but the old process keeps 
running

 The following code will have four prints:

pid_t first_fork = fork ();

// Original parent and child create new processes
pid_t second_fork = fork ();

// This line prints four times
printf ("Hello from %d!\n", getpid ());



 Sometimes it's useful to fork a clone of yourself
 Other times, you want to run another program
 In those situations, you first fork yourself and then have your 

child call something from the exec() family of functions:
Function Description

execl(char *path, char *arg0, ..., NULL) Executes the program with the given path

execle(char *path, char *arg0, ..., NULL, char* envp[]) Executes the program with the given path and environment 
variables

execlp(char *file, char *arg0, ..., NULL) Executes the program by looking it up in the current PATH

execv(char *path, char *argv[]) Like execl() but command-line arguments are in an array

execve(char *path, char *argv[], char *envp[]) Like execle() but command-line arguments are in an array

execvp(char *file, char *argv[]) Like execlp() but command-line arguments are in an array

fexecve(int fd, char *argv[], char *envp[]) Executes the program stored in the file descriptor fd



 The following programs runs ls, listing the contents of the 
current directory:

pid_t child_pid = fork ();
if (child_pid < 0)
exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{
int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}



 Once you've forked or spawned a process, it will be scheduled to 
run

 There are no guarantees about when a parent or a child will be 
scheduled relative to each other

 It can be useful for a parent process to wait until its child processes 
have terminated

 There are two functions for this:
 wait(int *stat_loc)
▪ Waits for all children

 waitpid(pid_t pid, int *stat_loc, int options)
▪ Waits only on child process with PID



 Here's the ls example from earlier, except that the parent process waits 
for ls to finish

 More code isn't shown, but the parent could continue doing other things
pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{

int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}

wait (NULL); // waits for ls to finish





 Although physical memory is shared between processes, the 
virtual memory system means that processes don't share 
memory directly

 Other things must be shared by processes:
 Network cards
 Hard drives and SSDs
 User input and output devices

 A uniform way to work with most shared resources is to treat 
them all like files

 This file abstraction makes many libraries similar and simpler



 The UNIX file abstraction uses two key ideas:
 A file is a sequence of bytes
 Everything is a file

 This abstraction is different from the traditional idea of files in a 
few ways:
 Moving backwards and forwards within a file isn't always possible
 Files don't always have names or live in a particular place
 Files don't always have a set structure

 Even so, creating, deleting, opening, closing, reading, and writing 
can be treated the same



 To open a file for reading or writing, use the open() function
 The open() function takes the file name, an int for mode, 

and an (optional) mode_t for permissions
 The name refers to an entity somewhere in the directory 

structure that might or might not be a normal file
 It returns a file descriptor as an int

int fd = open("input.dat", O_RDONLY);



 A number of constants specify whether the opening is for reading or writing
 The optional permissions value has other constants to set the permissions of the file when 

creating a new one
 Both sets of constants can be bitwise ORed together to make complicated values

Access Meaning

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for reading and writing

O_NONBLOCK Do not block on opening while waiting for data

O_CREAT Create the file if it does not exist, requires mode_t argument

O_TRUNC Truncate to size 0

O_EXCL Error if O_CREAT and the file exists

Name Description

S_IRUSR Read (user)

S_IWUSR Write (user)

S_IXUSR Execute (user)

S_IRGRP Read (group)

S_IWGRP Write (group)

S_IXGRP Execute (group)

S_IROTH Read (other)

S_IWOTH Write (other)

S_IXOTH Execute (other)



 The following example shows how to open a file
 For writing
 By creating it
 Truncating its size to 0 if there's already something in the file
 Making it readable and writable to the user and readable to others

 It's also common to use numbers in octal for permissions, where the 64's 
place is permission for the user, the 8's place is permission for the group, 
and the 1's place is permission for others
 S_IRUSR | S_IWUSR | S_IROTH = 110 000 100 = 0604

int fd = open("output.dat", O_CREAT | O_TRUNC | 
O_WRONLY, S_IRUSR | S_IWUSR | S_IROTH);



 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
// Fill with something
read( fd, buffer, sizeof(int)*100 );



 To close a file descriptor, call the close() function
 Close files when you're done with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC, 
0644);
// Write some stuff
close( fd );



 Linux provides some "special" files
 /dev/full

▪ A file that's says the device is full if you try to write to it, gives unlimited zeroes if you try to 
read from it

 /dev/null
▪ A file you can write to forever but simple discards the data (while saying that the write 

succeeded)
 /dev/random

▪ A file you can read a stream of random bytes from
 /dev/zero

▪ A file you can read an unlimited stream of zero bytes from
 They're not actually files, but you can treat them as if they are
 They can be useful for testing and sometimes even for the operation of 

program



 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC, 0644);
int buffer[100];
int i = 0;
for (i = 0; i < 100; ++i)

buffer[i] = i + 1;
write( fd, buffer, sizeof(int)*100 );



 It's possible to move the current location within the file using the lseek()
function

 Its arguments are
 The file descriptor
 The offset (positive or negative)
 Location to seek from:

▪ SEEK_SET (beginning of file)
▪ SEEK_CUR (current location)
▪ SEEK_END (end of file)

 Seeking is more common when reading, but you can seek while writing too

int fd = open("input.dat", O_RDONLY);
lseek( fd, 100, SEEK_SET );



 The following code finds out how big a file (stored with file 
descriptor fd) is in bytes:

struct stat metadata;
fstat (fd, &metadata);
printf ("File size: %lld bytes\n",

(long long)metadata.st_size);



 The following shows some fields in struct stat
 The st_mode field is a bitwise OR of permissions and other 

information from the table on the right
struct stat {
dev_t st_dev;    // device of inode
ino_t st_ino;    // inode number
mode_t st_mode;   // protection mode
nlink_t st_nlink;  // hard links to file
uid_t st_uid;    // user ID of owner
gid_t st_gid;    // group ID of owner
dev_t st_rdev;   // device type
off_t st_size;   // file size in bytes
// Other fields depending on OS ...

};

Name Description

S_IFIFO Named pipe (IPC)

S_IFCHR Character device (terminal)

S_IFDIR Directory file type

S_IFBLK Block device (disk drive)

S_IFREG Regular file type

S_IFLNK Symbolic link

S_IFSOCK Socket (IPC, networks)





 You can send signals to processes from the command line
 Ctrl-C: SIGINT (interrupt)
 Ctrl-Z: SIGTSTP (terminal stop, usually suspends)

 Signals often result in the process being killed
 Perhaps for that reason, the kill command is used to send 

arbitrary signals (not just killing ones)
 Flag gives the kind of signal
 Then specify the PID of the process

> kill –KILL 8382



 When using the kill command, the flag can either be the name of 
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.



 Just as you can use the kill command from the command line, you 
can also call the kill() function to send a signal to another 
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid



 Below, a parent forks a child
 The child goes into an infinite loop
 Then, the parent kills the child

pid_t child_pid = fork ();
if (child_pid < 0) 

exit (1); // exit if fork failed

if (child_pid == 0)
while (1) ; // child loops

sleep (1); // parent sleeps for 1 second
kill (child_pid, SIGKILL); // parent kills the child



 Although signals have default actions for processes, some signals can be 
overridden

 A process can define what happens when, for example, it's interrupted
 First, you need a function that will get called when a particular signal 

happens
 It must take an int (the signal) and return void

 Example that prints "I don't want to die!" and then exits

static void
handler(int signal)
{

write(STDOUT_FILENO, "I don't want to die!\n", 21);
exit(0);

}



 Once you've written the custom signal handler, you have to 
override it with the sigaction() function:

 The action parameter is a struct sigaction with a 
function pointer to the new handler

 The old parameter is NULL unless you want to find out what 
the old signal handler was

int sigaction(int signal, const struct sigaction *action,  
struct sigaction *old);



 The following code overrides the SIGINT signal with the handler from a couple 
of slides back

 Then it goes into an infinite loop until someone interrupts it (like with Ctrl-C)
int
main (int argc, char *argv[])
{

struct sigaction sa; // Struct we'll add the handler to
memset(&sa, 0, sizeof(sa)); // Zero out the contents first
sa.sa_handler = handler;

// Override SIGINT handler
if (sigaction (SIGINT, &sa, NULL) == -1)

printf ("Failed to overwrite SIGINT.\n");

printf ("Entering loop\n");
while (1);  // Loop until signal
return 0;

}



 It's sort of cool that we can make a handler print something special before 
crashing the program

 But we can also do some code to handle the signal and then jump back to 
a safe location
 Away from blocked I/O or an infinite loop
 Somewhere that's been marked and is still on the stack

 To do that, we need two functions

// Set jump location
int sigsetjmp(sigjmp_buf context, int mask);

// Jump to location
int siglongjmp(sigjmp_buf context, int value);



sigjmp_buf context;

static void handler(int signal)
{
write(STDOUT_FILENO, "I don't want to die!\n", 21);
siglongjmp (context, 1); // Jumps to marked location with value 1 (insane!)

}

int main (int argc, char *argv[])
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa)); sa.sa_handler = handler;

if (sigaction (SIGINT, &sa, NULL) == -1)
printf ("Failed to overwrite SIGINT.\n");

if (sigsetjmp (context, 0))  // Marks location and returns 0 the first time
printf ("Resuming execution\n");

printf ("Entering loop\n");
while (1);  // Loop until signal
return 0;

}





 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O 

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer



 We typically want a pointer that points to a certain kind of 
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;



 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int *pointer;
pointer = &value; // pointer has value's address



 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the 

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!



 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);



 One of the most powerful (and most dangerous) qualities of 
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from)  a pointer, it jumps the 
number of bytes in memory  of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?



 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?



 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and 

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3] );     // prints 11
printf("%d", *(value + 3) ); // prints 11
value[4] = 19; // changes 13 to 19



 What if you don't know what you're going to point at?
 You can use a void*, which is an address to…something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s; 
int* thingy = (int*)address; // Uh-oh
printf("%d\n", *thingy);



 In general, data is passed by value
 This means that a variable cannot be changed for the function 

that calls it
 Usually, that's good, since we don't have to worry about 

functions screwing up our data
 It's annoying if we need a function to return more than one 

thing, though
 Passing a pointer is equivalent to passing the original data by 

reference



 Let's imagine a function that can change the values of its 
arguments

void swapIfOutOfOrder (int *a, int *b)
{
if (*a > *b)

{
int temp = *a;
*a = *b;
*b = temp;

}
}



 You have to pass the addresses (pointers) of the variables 
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder(&x, &y); // Will swap x and y

swapIfOutOfOrder(&5, &3); // Impossible



 Memory can be allocated dynamically using a function called 
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes 
you want

 It returns a pointer to that memory, which you cast to the 
appropriate type

int* data = (int*)malloc(sizeof(int));



 It's common to allocate an array of values dynamically
 The syntax is exactly the same, but you multiply the size of 

the type by the number of elements you want

int i = 0;
int *array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; ++i) // Initialize for fun
array[i] = i + 1;



 We can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at

struct student bob;
struct student *studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));



 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be 

written as an arrow (->)

struct student* studentPointer = (struct student*) 
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;



 If you pass a struct directly to a function, you are passing it by 
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and 
so that its members can be changed

void flip (struct point *value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}



 One problem with malloc() is that the memory it allocates is filled with 
garbage

 Like malloc(), calloc() allocates memory, but it also zeroes all of it 
out

 Many programmers think it's safer to use calloc() in all situations 
where you would use malloc()

 There's a slight syntax difference:
 calloc() takes two arguments: number of elements and size of each one

// malloc() version
int *array1 = (int*)malloc (sizeof(int)*100);
// equivalent calloc() version
int *array2 = (int*)calloc (100, sizeof(int));



 For a dynamic array, it can be useful to grow an existing chunk of memory if it's 
too small

 You could allocate an entirely new, bigger chunk of memory, copy everything 
from the old memory over, and then free the old memory
 This is what you have to do in Java

 C provides a slick function, realloc(), that does all of that for you
 Arguments: memory to resize, new size
 Return value: resized memory

if(size == capacity)
{
capacity *= 2;
array = realloc(array, capacity*sizeof(int));

}
array[size] = element;
++size;



 C isn't garbage collected like Java
 If you allocate something on the stack, it disappears when the function 

returns
 If you allocate something on the heap, you have to deallocate it with 
free()

 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char *things = (char*)malloc (100*sizeof(char));
// Do stuff with things
free(things);
things = NULL;



 Given that i has type int and p and q have type int*, 
which of the following will cause a compiler error?

a)p = &i;
b)p = *&i;
c)p = &*i;
d)i = *&*p;
e)i = *&p;
f)i = &*p;

g)p = &*&i;
h)q = *&*p;
i)i = **&p;
j)q = *&p;
k)q = &*p;





 There are many IPC approaches, but they can all be  
categorized as either message passing or shared memory

 Message passing:
 Sender prepares a message
 Sender makes a system call to request a data transfer
 Kernel copies the message into a buffer
 Receiver makes a system call to retrieve the data
 Receiver copes the message into its own memory



 Shared memory IPC is completely different
 The processes decide on a chunk of virtual memory that will 

be used for IPC
 The processes make system calls to request that this memory 

is shared
 Once it's shared, processes can read and write from shared 

memory just like any other data in the program
 Mediation through the kernel isn't needed after the memory 

is shared



 Message passing requires:
 A system call to read
 A system call to write
 Copying the message into kernel memory
 Copying the message into receiver memory

 Thus, sending lots of messages can cause a lot of overhead
 However, sending a small number of messages can be less 

expensive than setting up shared memory
 Message passing naturally handles the problem of 

synchronization
 Making sure that timing doesn’t corrupt memory



 It's computationally expensive to set up the shared memory
 But that's a one-time cost
 If two processes are sharing lots of messages, it can be more 

efficient to use a shared memory system
 Perhaps the more significant problem with shared memory is 

synchronization
 Processes reading and writing the same memory can leave the memory in 

an inconsistent state
 If one process executes x += 100 while another executes x -= 100, 

the result could be the correct x or the incorrect x + 100 or x – 100
 Tools must be used to guarantee synchronization



 Using the categories from the previous slide, we can list all of the IPC techniques that will 
be covered in this class

 Signals are a very limited form of IPC

Technique Model Purpose Granularity Network

Pipe/FIFO Message passing Data exchange Byte stream Local

Socket Message passing Data exchange Either Either

Message queue Message passing Data exchange Structured Local

shm() Shared memory Data exchange None Local

Memory-mapped file Shared memory Data exchange None Local

Signal Message passing Synchronization None Local

Semaphore Message passing Synchronization None Local





 Pipes are a way to do message passing between two 
processes
 The bytes flow in one direction
 There's a different file descriptor for each end
 Think of it like a pipe where water is poured into one end and comes 

out the other
 Internally, the shell uses pipes to communicate between two 

programs when you use the | operator on the command line 

sort foo.txt | grep -i error | head -n 10



 Pipes only go in one direction
 One end is the reading end, and the other is the writing end

 Pipes preserve order
 The bytes read come out in the same order they were written

 Pipes have limited capacity
 If a pipe is full, trying to write to the pipe will block until more is read

 Pipes are unstructured
 It's all just bytes, so the processes have to know what kind of data to 

expect
 Messages smaller than PIPE_BUF are sent atomically
 Two processes writing messages to a pipe will not get their messages 

garbled



 The pipe() function takes an int array of length 2 to hold file 
descriptors corresponding to the ends of the pipe

 It's convention to use element 0 for reading and element 1 for 
writing

 For piping between parent and child, the call to pipe() happens 
before the fork(), so that both have clones of the same file 
descriptors

 One process reads from the pipe and the other writes
 Each process closes the end that they're not using

int pipe (int pipefd[2]);



int pipefd[2];
char buffer[10];
memset (buffer, 0, sizeof (buffer));
int result = pipe (pipefd); // Open the pipe
assert (result >= 0);

pid_t child_pid = fork (); // Create child process
assert (child_pid >= 0);
if (child_pid == 0)
{
close (pipefd[1]); //  Child closes writing end
ssize_t bytes_read = read (pipefd[0], buffer, 10); // Read from pipe
if (bytes_read <= 0)
exit (1);

printf ("Child received: '%s'\n", buffer);
exit (0);

}

close (pipefd[0]); // Parent closes the reading end
strncpy (buffer, "hello", sizeof (buffer)); 
printf ("Parent is sending '%s'\n", buffer); 
write (pipefd[1], buffer, sizeof (buffer)); // Parent sends "hello"
wait (NULL); // Wait for child to terminate



 Let's go back to our command-line example:

 What's happening behind the scenes?
 The shell is calling fork() and exec() to run each of those processes
 Then, each process is linked to the next one with a pipe
 But how do those arbitrary processes know to read from or write to a pipe?
 They don't, so the shell magically changes stdout or stdin to pipe file 

descriptors

sort foo.txt | grep -i error | head -n 10

sort grep head
redirected
stdout

redirected
stdin

redirected
stdout

redirected
stdin



 The dup2() function closes a new file descriptor and 
replaces it with an old file descriptor

 This function is used by the shell to close their stdin or 
stdout and replace it with an end of a pipe

 The syntax is confusing:
 The first file descriptor continues to function
 All uses of the second one are performed with the first one

int dup2 (int oldfd, int newfd);





 Pipes are great for parent and child processes
 Create the pipes in the parent, use them in the children

 But what if two unrelated processes want to share a pipe?
 FIFOs or named pipes are pipes associated with a file name
 These files can be seen in the file system, but they're special 

files intended only for use as pipes
 Naming:
 In Linux, it's common to put these files in the /tmp/ directory
 It's important to pick a file name that's unlikely to collide with other 

FIFOs



 The mkfifo() function is used to create a FIFO

 The mode is a bitwise OR of the permissions you want the FIFO to 
have (who can read and write)

 Using it creates the FIFO (which looks like a file), but programs still 
have to open it to use it and close it when done

 After the FIFO is done being used, the unlink() function 
removes the path from the file system

int mkfifo (const char *path, mode_t mode);

int unlink (const char *path);



 The following code creates a FIFO and reads int values until it gets a 0
const char *FIFO = "/tmp/MY_FIFO";
assert (mkfifo (FIFO, S_IRUSR | S_IWUSR) == 0);
int fifo = open (FIFO, O_RDONLY);  // Open FIFO, delete if fails
if (fifo == -1)

{
fprintf (stderr, "Failed to open FIFO\n");
unlink (FIFO);
return 1;

}

bool done = false;
while (!done)
{
int value = 0;
if (read (fifo, &value, sizeof (int)) == sizeof (int)) {

if (value == 0)
done = true;

else
printf ("%d\n", value);

}
close (fifo);
unlink (FIFO);



 The following code opens the FIFO and writes 6 int values to it

const char *FIFO = "/tmp/MY_FIFO";

int fifo = open (FIFO, O_WRONLY);
assert (fifo != -1);

for (int index = 5; index >= 0; index--)
{
write (fifo, &index, sizeof (int));
sleep (1); // Sleep for a second before writing more

}

close (fifo);





 Having covered pipes and FIFOs, we'll jump to the other side of 
the fence and talk about shared memory

 One shared memory technique are memory-mapped files
 A normal file is mapped into the virtual memory of a process
 Data can be read and written into that memory using normal 

pointer operations
 And the data will magically get read and written to the file!

 One process can use memory-mapped files to interact with a file 
without using read() or write() calls

 But two or more processes can use memory-mapped files to 
exchange data directly



Kernel

Stack

Memory Map

Heap

Data

Code

 There's actually a special segment 
we haven't talked about in virtual 
memory before used just for 
memory mapping
 Between the heap and the stack

 The virtual memory system is able 
to read only needed parts of the 
file into memory (often a page at a 
time)

 Storing data into this memory is 
eventually written back to the file

Disk

File
9eebba32
6a320e2d
d39a8f04
1db89c49
56b3a80a



 Over regular file access
 Multiple processes can have read-only access to a common file
▪ Often done with shared libraries, so that many different processes are able to access, 

for example, the same code for printf()
 Programs can sometimes be simpler because there's no need to use 
fseek() to jump around a file

 Reading files can be more efficient because the file contents don't have to 
be copied into the kernel's buffer cache

 Compared to other kinds of IPC
 Writable memory-mapped files are fast for IPC
 Unlike message passing, data continues to exist and can be read 

repeatedly



 The mmap() function returns memory mapped to a particular file descriptor

 addr is a suggestion for where the memory goes but should usually be NULL
 length is how many bytes to map
 prot are flags shown on the right that can be combined
 flags are MAP_SHARED or MAP_PRIVATE (and others), depending on whether 

the area is shared
 fd is an open file descriptor for a file
 offset is the starting point inside the file

void *mmap (void *addr, size_t length, int prot, int flags, 
int fd, off_t offset);

Protection Actions permitted
PROT_NONE May not be accessed
PROT_READ Region can be read
PROT_WRITE Region can be modified
PROT_EXEC Region can be executed



 The munmap() function unmaps an existing map

 addr is the start of the mapped address
 length is how much to unmap

 The msync() function synchronizes the file with the mapped memory

 MS_ASYNC flag returns immediately and MS_SYNCwaits for the sync to 
complete

void munmap (void *addr, size_t length);

void msync (void *addr, size_t length, int flags);



 The following example checks to make sure that the 2nd, 3rd, and 4th bytes of an executable 
are "ELF", a marker of the executable and linking format used by Linux

int fd = open ("/bin/bash", O_RDONLY);
assert (fd != -1);

struct stat file_info;
assert (fstat (fd, &file_info) != -1);

// Map whole file for reading, unshared
char *mapping = mmap (NULL, file_info.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
assert (mapping != MAP_FAILED);

// Bytes 1 - 3 of the file must be 'E', 'L', 'F'
if (mapping[1] == 'E' && mapping[2] == 'L' && mapping[3] == 'F')

printf("Valid executable!\n");
else

printf("Invalid executable!\n");

munmap (mapping, file_info.st_size); // Unmap file and close it
close (fd);





 POSIX IPC function refer to IPC object named with a string that follows a 
particular format:
 It must start with a slash
 It must have one or more non-slash characters
 Example: /comp3400_mqueue

 Object names must be unique
 These objects often appear as files in the file system, but you shouldn't 

interact with them using normal file commands
 POSIX IPC connections also have two other (familiar) values:
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, 
O_RDWR, O_CREAT, and O_EXCL

 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP



 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions 

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy 

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available 

bytes at a time
 Message queues send messages as units



 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority



 The following code creates a message queue and sends "WOMBAT"

 Priority increases as the number increases
 Priorities start at 0 and go up to at least 31, but some systems go as high as 32768
 Read documentation to find out how many priority levels there are

mqd_t mqd = mq_open ("/comp3400_mq", O_CREAT | O_EXCL | O_WRONLY,  0600, 
NULL);  // mq_open() requires four arguments when creating

if (mqd == -1) // Check for error
{

perror ("mq_open failed");
exit (1);

}

mq_send (mqd, "WOMBAT", 7, 10); // Send WOMBAT (7 chars) with priority 10
mq_close (mqd);



 With pipes and FIFOs, it's common to create a fixed-size 
buffer and then read into it, usually only filling part of it

 With message queues, you have to read exactly the size of a 
message that's waiting for you
 If not, the read will fail

 Two strategies:
 Use a system where the sizes of messages are always the same
 Use the mq_getattr() function to get the attributes of a message 

waiting in the message queue and create a buffer exactly the right 
size to read it



 The following code reads the "WOMBAT"message sent by the other code
 It uses mq_getattr() to find out how big of a buffer it needs

mqd_t mqd = mq_open ("/comp3400_mq", O_RDONLY); // Only two arguments to open
assert (mqd != -1);

struct mq_attr attr;
assert (mq_getattr (mqd, &attr) != -1); // Get attributes

char *buffer = calloc (attr.mq_msgsize, 1); // Allocate buffer with size
assert (buffer != NULL);

unsigned int priority = 0;
if ((mq_receive (mqd, buffer, attr.mq_msgsize, &priority)) == -1) // Get message
printf ("Failed to receive message\n");

else
printf ("Received [priority %u]: '%s'\n", priority, buffer);

free (buffer);
buffer = NULL;
mq_close (mqd);





 Shared memory is pretty much the same as using memory-
mapped files
 Except that there's no file associated with the share
 So there's no persistent record of the memory

 To share memory, create a shared memory object (like a file, 
but isn't) with shm_open()

 The size of this object is often resized with ftruncate()
 Then, this shared memory object is mapped with mmap(),

as was done with memory mapped files
 To delete the shared memory object, use shm_unlink()



 The shared memory 
mapping means that a 
region of memory in one 
process exactly corresponds 
to memory in another region 
of memory in another 
process

 It's unlikely that the mapped 
memory will be in the same 
location in virtual memory 
for the two processes

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Process 1 Process 2



 name gives the name of the object
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, 

and O_EXCL
 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP

 name is the object to delete

 fd is a descriptor for the object or file to resize
 length the is the new size

int shm_open (const char *name, int oflag, mode_t mode);

int shm_unlink (const char *name);

int ftruncate (int fd, off_t length);



 First, let's imagine a struct declaration for structs that contain 
permission information

struct permission
{

int user;
int group;
int other;

};



 A parent process:
 Creates a memory-mapped object
 Stretches it to be exactly the right size
 Maps some memory to this object

int shmfd = shm_open ("/comp3400_shm", O_CREAT | O_EXCL | O_RDWR, 
S_IRUSR | S_IWUSR);

assert (shmfd != -1);

// Resize to hold one struct
assert (ftruncate (shmfd, sizeof (struct permission)) != -1);

// Map the object into memory
struct permission *perm = mmap (NULL, sizeof (struct permission),

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
assert (perm != MAP_FAILED);



 Fork the process
 Then, the child process:
 Sets values in the struct
 Unmaps the memory
 Closes the object

pid_t child_pid = fork();
if (child_pid == 0)

{
perm->user = 6;
perm->group = 4;
perm->other = 0;

// Unmap and close the child's shared memory
munmap (perm, sizeof (struct permission));
close (shmfd);
exit(0);

}



 Finally, the parent process:
 Waits for the child to finish
 Outputs the data stored by the child
 Unmaps the memory and closes the object
 Deletes the object

wait (NULL); // Wait for the child to finish

// Read from mapped memory
printf ("Permission bit-mask: 0%d%d%d\n",

perm->user, perm->group, perm->other);

munmap (perm, sizeof (struct permission)); // Unmap
close (shmfd); // Close object
shm_unlink ("/comp3400_shm"); // Delete object





 Both of the kinds of shared-memory IPC we've talked about often 
need synchronization

 Synchronization means controlling when reads and writes 
happen to avoid getting meaningless results

 In the previous example, a parent process waited for the child 
process to finish writing (and die) before reading

 In general, doing so is undesirable:
 Many communicating processes do not have a parent/child relationship
 Waiting for a process to die means that there can't be back-and-forth 

communication



 Semaphores are a simple kind of synchronization
 Internally, they have a counter
 If a process calls wait on a semaphore and the semaphore's value 

is 0 or lower, the process will get blocked
 When another process calls post and the counter goes up, a 

blocked process will resume (decrementing the counter back to 0 
first)

 Many processes can be waiting on a single semaphore, but only 
one will resume per call to post

 Waiting on a semaphore is also called decrementing, downing, or 
P

 Posting on a semaphore is also called incrementing, upping, or V



 Processes A and B have access to shared memory
 A is writing data, and B wants to read after the writing is done
 A and B also have access to a semaphore initialized to 0
 A increments the semaphore after it finishes writing
 B decrements the semaphore before reading
 Everything works out:
 If B decrements the semaphore before A increments, B will block 

until A is done
 If A increments the semaphore before B tries to decrement it, the 

semaphore will already be 1, so B will decrement it but not block



 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */ );

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);



 Using a semaphore can be frustrating if you wanted to do other 
stuff and get blocked

 Instead of calling sem_wait(), there are two alternatives:

 Tries to decrement the semaphore but gives an error code if it would block

 Waits on the semaphore but waits only for the amount of time specified in 
the struct timespec

int sem_trywait (sem_t *sem);

int sem_timedwait (sem_t *sem, struct timespec *time);



 In order to avoid worrying about names, it's also possible to 
create unnamed semaphores, using the following functions:

 Create an unnamed semaphore
 pshared is 0 if used only by threads of the same process and non-

zero is shared by different processes

 Delete an unnamed semaphore

int sem_init (sem_t *sem, int pshared, unsigned int value);

int sem_destroy (sem_t *sem);





 Review up to Exam 2



 Department celebration today!
 Point patio
 11:30 a.m. – 1:30 p.m.

 CS Club study session for all finals today!
 Point 113
 4:15 – 5:15 p.m.

 Work on Assignment 8
 Due Friday before midnight!


	COMP 3400
	Last time
	Questions?
	Assignment 8
	Review
	Final exam format
	Linux/UNIX commands you should know
	Fixed-Width Types
	Fixed width types
	What about printing those things?
	Using the print macros
	System Architectures
	System architectures
	Client/server architectures
	Client/server advantages and disadvantages
	Peer-to-peer (P2P) architectures
	Layered architectures
	Pipe-and-filter architectures
	Event-driven architectures
	Hybrid architectures
	State Machines
	UML state models
	State machines as recognizers
	Implementing state machines
	Example transition table
	Example table in code
	Effects
	Sequence models
	Processes
	Processes
	Virtual memory
	Why is it virtual memory?
	Operating systems
	Multiprogramming
	Problems with naïve batch processing
	Multiprogramming
	Types of multiprogramming
	Context switches
	Kernel
	Kernel
	x86 operating mode
	Kernel invocation
	System Calls
	System calls
	How system calls work
	Common system calls
	Process Life Cycle
	Creating processes in code
	Using fork()
	Fork bombing
	Running another program
	Example with exec()
	Waiting for a child to finish
	Example with wait()
	Files
	Sharing resources
	UNIX file abstraction
	Opening files
	Constants
	Example with other constants
	Reading from files
	Closing files
	Special files
	Writing to files
	Seeking to locations
	Example getting file metadata
	Interpreting metadata
	Events and Signals
	Command line signals
	Common signals
	Sending signals in a program
	Example of kill() function
	Custom signal handlers
	Overriding the signal handler
	Overriding example
	Reborn like a phoenix
	Full example
	Pointers
	Pointers
	Declaration of a pointer
	Reference operator
	Dereference operator
	Aliasing
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	void pointers
	Functions that can change arguments
	Example
	How do you call such a function?
	malloc()
	Allocating arrays
	Pointers to structs
	Arrow notation
	Passing structs to functions
	calloc()
	realloc()
	free()
	Pointer practice
	Interprocess Communication
	Message passing
	Shared memory
	Pros and cons of message passing
	Pros and cons of shared memory
	IPC taxonomy
	Pipes
	Pipes
	Pipe details
	Pipe mechanics
	Pipe example
	Pipes and shell commands
	dup2()
	FIFOs
	FIFOs
	The mkfifo() function
	FIFO example reader
	FIFO example writer
	Memory-Mapped Files
	Memory-mapped files
	Visualization
	Advantages
	Mechanics
	Other useful functions
	Example
	POSIX IPC
	POSIX IPC
	Message queues
	POSIX message queue functions
	Message queue sending example
	Warning!
	Message queue receiving example
	Shared Memory
	Shared memory
	Visualization
	Functions
	Example of memory mapping
	Example of memory mapping continued
	Example of memory mapping continued
	Example of memory mapping finished
	Semaphores
	Synchronization
	Semaphores
	Example
	Semaphore functions
	Trying or waiting
	Unnamed semaphores
	Upcoming
	Next time…
	Reminders

